
An Adaptive Embedded Boundary Method for the
Compressible Navier Stokes Equations

D. T. Graves
Applied Numerical Algorithms Group

Lawrence Berkeley National Laboratory
Berkeley, CA
April 7, 2015

Acknowledgements

• Lots of people have worked on Chombo EB: P. Colella, D.
Devendran, A. Dubey, H. Johansen, T. Ligocki, P.
McCorquodale, D. Martin, D. Modiano, J. Pilliod, P. Schwartz,
D. Trebotich, B. Van Straalen, M. Barad, D. Calhoun, X. Gao,
J. Johnson, B. Keen, G. Miller, A. Nonaka, J. Percelay, C.
Shen, B. Sjogreen, and many others.

• Research supported financially by the Office of Advanced
Scientific Computing, US Department of Energy, under
contract number DE-AC02-05CH11231.

Overview

• Algorithm
• Embedded boundary context.
• Grid generation.
• Strategies for stable discretizations of different classes of

PDEs.
• Layering these strategies for a Navier-Stokes algorithm.
• Results.

• Chombo Software Infrastructure
• AMR context
• Chombo Tools for EB and AMR
• Performance Results

• Ongoing work

Equations and Requirements
∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu + pI) = ∇ · τ

∂(ρE)

∂t
+∇ · (ρuE + up) = ∇ · (τu) +∇ · (ξ(∇T))

τ = µ(∇u +∇uT) + λ(∇ · u)I.

• The system of PDEs has both parabolic and hyperbolic terms.
• The domain contains complex geometry.
• We need strong conservation.
• We need an algorithm consistent with block-structured

adaptivity.
• We want a time step that corresponds with the hyperbolic

wave speeds.

Spatial Discretization

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

• Cartesian grid cells are cut with the surface of the geometry.

• Robust, fast, and accurate grid generation is tractable. Geometric
information can be generated to any order of accuracy.

• Algorithms are complex but tools to manage this complexity are
available.

• Load balancing requires some care.

EB Grid Generation
As input we take any implicit function φ(x, y, z) = 0.

• The boundary surface is the zero set of the function.

• We move up the dimensions using the divergence theorem at each.

• For smooth φ, we can get grids of any accuracy (Schwartz, 2015).

• EB grid generation technology has been robust for a long time
(Aftosmis, Berger, Melton 1998).

EB Grid examples

Grids can be generated using image data. This is calcite.

EB Grid examples
Grids can be generated using analytic functions. This is a nozzle
from a wakefield accelerator.

EB Grid examples
Grids can be generated using local function values. This is the SF
bay and delta.

Navier Stokes Dissection

• Divide the system into hyperbolic and parabolic terms.

• Most of the nonlinear terms are mercifully hyperbolic.

• Energy dissipation is the exception.

∂U

∂t
+ LH(U) = LE(U)

U =

 ρ
ρu
ρE

LH =

 ∇ · (ρu)
∇ · (ρuu + pI)
∇ · (ρuE + up)

 LE(U) =

 0
∇ · τ

∇ · (ξ∇T) +∇ · (τu)

Discrete Divergence and Small Volumes
The divergence theorem,

∫
Vi
∇ · F dV =

∫
∂Vi

F · n̂ dA, becomes

Dc(F)i = 1
κih

(D∑
d=1

(αF d)i+ 1
2e

d − (αF d)i− 1
2e

d + (αF)Bi · n̂i
)
.

κi = |Vi|/hD α
i+1

2
ed

= |A
i+1

2
ed
d
|/hD−1, αB

i = |AB
i |/hD−1

V

A

i,j

A i+1/2,j

A i,j−1/2

i,j+1/2

A i−1/2,j

A ij

B

F

F

F

F

i,j−1/2

i+1/2,j

i,j+1/2

i−1/2,j • The volume fraction κ can be
arbitrarily small.

• We deal with this “small cell problem”
differently for different classes of PDE.

Hyperbolic Equations with Small Cells
If you discretize a hyperbolic system of the form ∂U

∂t +∇ · F = 0 as

Un+1 = Un −∆tDcF,

this has a time step constraint

∆t <
h

vmax
(κmin)

1
D

where vmax is the maximum wave speed and κmin is the smallest
volume fraction in the domain.

• Routinely, κmin = O(10−7) and is sometimes much smaller.

• Cell-merging methods eliminate small cells in grid generation.

• H-Box methods define larger control volumes.

• We use the oldest and simplest technique, redistribution.

Redistribution
• Get Dnc(F), a stable, non-conservative approximation to ∇ · F .

• Update with hybrid divergence.

• Redistribute δM to neighboring volumes.

• Mass weighting works best with strong shocks.

• Un+1,∗
i = Uni −∆t(κiD

c(F) + (1− κi)(Dnc(F)))

• δM i = κi(1− κi)(Dc(F)−Dnc(F))

• Un+1 = R(δM,Un+1,∗)

Non-conservative Divergence
Here are two examples of common Dnc discretizations.

• Use the average of the neighboring Dc

Dnc
i =

∑
j∈N (i)

Dc(F)jκj∑
j∈N (i)

κj

• Extrapolate to covered faces and use finite differences:

Dnc =
1

h

(D∑
d=1

F di+ 1
2e

d − F di− 1
2e

d

)
n

Elliptic Equations with Small Cells
For Poisson’s equation

∇ · (∇φ) = R,

to avoid small cell problems, we simply solve

κDc(∇φ) = κR.

• This diagonal weighting works quite well, even with geometric
multigrid.

• Without this weighting, floating point problems can arise and
multigrid smoothing becomes very difficult.

Parabolic Equations with Small Cells

Given the heat equation ∂φ
∂t = ν∇ · (∇φ), with very small ν, one

might be tempted to solve this explicitly.

φn+1 = φn + ν∆tDc(∇φ)

This is a bad idea, as the time step constraint for this is

∆t <
h2(κmin)

2
D

2Dν
,

Implicit Parabolic Equations
Implicit parabolic solvers with small cells tend to converge quickly
because they are diagonally dominant. For the heat equation,
(L(φ) ≡ Dc(∇φ)).

• Euler (first order): (κI −∆tκL)φn+1 = φn

• Crank Nicolson (second order with occasional issues):
(κI − ν∆t 1

2κL)φn+1 = κν∆t
2 Lφn.

• TGA (second order, very stable; {µi} is a set of constants):
φn+1 = (κνI − µ1κL)−1(κ)(κI − µ2κL)−1(κI + µ3κL)φn.

• To preserve conservation, use the implicit advance to produce a
stable approximation to L(φ):

L(φ)n+ 1
2 =

φn+1 − φn

∆t
.

Navier Stokes Outline

• Update the solution explicitly with hyperbolic terms.

• Compute the momentum diffusion implicitly.

• Compute the energy dissipation using both implicit and
explicit techniques.

• Compute the conduction term implicitly.

Mass

• Compute U∗, the solution advanced explicitly using only
hyperbolic terms. This includes the hybrid divergence and
explicit redistribution.

U∗
i = Uni −∆tLHi (Un)

• This produces the final value of density (ρn+1 = ρ∗).

Momentum
• Fixing density ρ = ρn+1, advance implicitly

ρ
∂u

∂t
= ∇ · τ

one step from u∗ to produce a stable Lm(u) = ∇ · τ .

(Lm(u))n+
1
2 = ρ

(
un+1 − u∗

∆t

)
,

• This gives the final value of momentum

(ρu)n+1 = (ρu)∗ + ∆t(Lm(u))n+
1
2 .

Energy Dissipation

We need to produce an approximation to Ld = ∇ · (τu). This is a
nonlinear operator in u, so a simple implicit solve is not possible.

• F s ≡ (τu).

• Compute κDc(F s) and Dnc(F s).

• Hybrid Divergence: Dh(F s) = κDc(F s) + (1− κ)Dnc(F s).

• Advance energy from (ρE)∗ using the hybrid divergence.
(ρE)∗∗ = (ρE)∗ + ∆tDh(F s).

• Save the energy difference δEi = κi(1−κi)(Dc(F s)−Dnc(F s)) as
a RHS for the temperature equation. This preserves conservation.

Conduction
• Advance the conduction equation from T = T ∗∗. Fix ρ = ρn+1.

ρCV
∂T

∂t
= ∇ · ξ∇T + δE

• Get a stable approximation to Lk(T)n+ 1
2 = ∇ · (ξ∇T)n+ 1

2 :

Lk(T)n+ 1
2 = ρCv(

Tn+1 − T ∗∗

∆t
)− δE.

• This gives us the final value of energy

(ρE)n+1 = (ρE)∗∗ + ∆t(Lk(T))n+ 1
2 .

Flux Calculations

• Pointwise fluxes must be centered on face centroids for a
second order accurate flux integral.

• We compute fluxes at face centers and interpolate to the
centroids.

Different Operator’s Fluxes

• For hyperbolic fluxes, we use a second order Godunov
method. The pressure work is the only EB flux.

• For the conduction operator, ∇T is calculated at faces. and
there is no EB flux (insulated boundary).

• For the viscous stress operator (and energy dissipation), the
fluxes are constructed from ∇u. Since uEB = 0, F sEB = 0.

• The viscous flux at the EB is more complicated.

Viscous Momentum Flux
We need the ∇u at the embedded boundary.

• ∂u
∂t̂1

= ∂u
∂t̂2

= 0 (no slip condition).

• We calculate the normal gradient with the u · n̂ = 0 and using
surrounding values of u.

• We rotate the resulting gradient to (x, y, z).

x

y

z

t

t

n

1

2

Results–Convergence Test

We run a vortex with maximum Mach number M = 0.5 inside a sphere
(or a circle in 2D) and measure solution error. All resolutions are run to a
fixed time and compared to an exact answer (in this case, an even finer
run). CFL is kept fixed.

2D convergence results:
Variable L∞ L1 L2
(ρ) 1.980e+00 1.982e+00 1.978e+00

(ρu)x 1.822e+00 1.822e+00 1.824e+00
(ρu)y 1.822e+00 1.822e+00 1.824e+00
(ρE) 1.978e+00 1.978e+00 1.973e+00

3D convergence results:
Variable L∞ L1 L2
(ρ) 1.979e+00 1.986e+00 1.982e+00

(ρu)x 1.814e+00 1.805e+00 1.810e+00
(ρu)y 1.814e+00 1.805e+00 1.810e+00
(ρu)z 1.814e+00 1.805e+00 1.810e+00
(ρE) 1.978e+00 1.983e+00 1.980e+00

Results–Boundary Layer

We initialize a flow at constant velocity (M = 0.5, ReL = 30, 000)
and measure the converged velocity as a function from the
distance from where the no-slip condition starts.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

U = M c

θ

D

D

W

L

U

x

y

u

Boundary Layer vs. Blasius
We plot every point in the domain where 5000 < Rex < 15000 and
show good agreement with the Blasius profile. We suspect that the

departure might be due to compressibility effects. η = y
√

U
νx .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9

|u
|/(

M
c)

η

nxf=4096
Blasius

Glaz, et al. Shock Reflection
Glaz, et al. (1985) compared an inviscid, regular grid calculation to an
experimental shock reflection at M = 7.1. They found the results were
very different. The ratio RM was much smaller in the experiment.

R =
L

LM

M

R

LR

L M

H
ρ
H

p p
L

ρ
L

Results– Shock Reflection

We make a shock tube to produce a M = 7.1 shock over a wedge to
compare with Glaz, et al. (128x64 base grid, 7 levels of refinement,
16384x8192 effective resolution at the finest level).

θ = 49 0

ρ
H

p p
L

ρ
LH

Results– Mach stem length, inviscid

Glaz, et al.: RM = 0.07 (grid aligned calculation)
Us: RM = 0.072 (EB calculation).

Results– Mach stem length, viscous

Glaz et al.: RM = 0.038 (experiment)
Us: RM = 0.03 (calculation)

Results– Lambda Shock

We also captured a classic shock-boundary layer interaction
pattern, the lambda shock. See Schlichting for details.

Wakefield Capillary Tube

In the capillary tubes of wakefield accelerators they energize the core.
The core expands to make a “fluid pipe”. This simulation is meant to
determine whether the fill tubes distort this pipe. We do not include
ionization or magnetization. Initially ρ = ρ0, u = 0.

E

E

H

L

Wakefield Capillary Tube

We do observe a formation of a low density core and it does,
unsurprisingly, distort rather quickly (35µs) around the fill tubes.

Parabolic Mirror

To illustrate AMR efficiency gains, we set up a shock tube in front of a
parabolic mirror. 4 level calculation (coarsest 128D, finest 1024D)

p
0

ρ
01

ρ
1

p

Parabolic mirror

The finest level only occupies a small percentage of the domain even
after many shock reflections.

Chombo EB AMR

Chombo provides infrastructure for block-structured AMR and supports
particles, mapped grids, multiblock....

• AMR levels are represented as
unions of boxes. Each box gets
a processor assignment.

• Chombo has very usable
frameworks for elliptic and
time-dependent AMR.

• EB presents some unique
challenges. So let’s focus on
EB.

Chombo Time Stepping
• Berger-Oliger (1984) recursive time stepping allows all refinements

to have the same CFL.

• Coarse levels are advanced first and used as boundary conditions
for finer advances.

• Level synchronizations (refluxing, averaging, elliptic constraints)
happen when levels reach the same time.

Level

Time

(n+1)

0
1

2

1

2

3

4

6

57

9

10

11

12

13

8

∆t

∆ t

n

Chombo Elliptic Framework

• AMRMultigrid follows the Martin-Cartwright (1996) algorithm for
geometric multigrid in an AMR context.

• Templated framework allows any linear operator.

• Other linear solvers (eg. BiCGStab) are included.

• An interface to PETSc is included.

• Geometric multigrid preconditioned PETSc (which uses algebraic
multigrid) is a common choice.

Chombo’s EB Elliptic Operators

The EB operators included with Chombo are

• constant coefficient Poisson,

• variable coefficient Helmholtz,

• variable coefficient viscous tensor.

To demonstrate, we solve ∇ · ∇φ = 1, φ = 0 on all boundaries.

R = 1

Poisson in 2D
642, 4 levels of refinement, effective resolution 10242. Run on a desktop
in less than a minute.

Poisson in 3D
643, 2 levels of refinement, effective resolution 2563. Run on a desktop in
a couple of minutes.

Coarse-Fine Interpolation
• We fill ghost cells for elliptic problems using an extension of

(Schwartz, et al. 2006).

• This algorithm can get a bit arcane considering we have to avoid
using coarse data covered by finer data.

• Coarse-fine interpolation gets much easier with the higher-order EB
formulation.

Redistribution and Refluxing
• Refluxing preserves conservation through flux matching.

• Redistribution weights can be based on volume alone or have a
weighting. For CNS, we use mass-weighting.

• The bookkeeping for redistribution has to take into account mass
that leaves the level. Chombo has tools for this, as well.

Chombo EB Description

• Connectivity at every resolution is described by a sparse, distributed
graph.

• The graph is formed at the finest level and coarsened using graph
coarsening.

• This graph allows for multiple volumes/cell and can be complex.

• Heterogeneous description presents performance challenges.

vy

EB Performance Measurement

• Chombo timers present a good view of the time spent in different
routines with very low overhead.

• Chombo memory counters can provide a very accurate picture of
how much memory has been allocated (and what the OS thinks is
the memory usage). The trace can be used to locate spots in the
code where the memory jumps.

EBAMRCNS::advance 166.26 10
98.5% 163.83 10 diffusion dance
1.3% 2.23 10 flux divergence
0.1% 0.16 10 time stepcalc
0.0% 0.02 10 copyTo
0.0% 0.01 10 max min check

EB Parallel Performance

• We have gotten good weak scaling to O(108) processors with
EBAMRINS using a timed load balance.

• Memory imbalance can be an issue.

Ongoing EB Performance Work

• We are exploring using memory as the load for load balancing.

• Using execution time as a load has been effective.

• Different modules have to be load balanced differently.

• Introspective load balancing with hybrid MPI/OpenMP will probably
not be sufficient forever. Other strategies being explored include:

• Tiling (TIDA).
• Runtime systems (Charm++, GASNet) to avoid

synchronizations.
• Stencil-based languages.
• Higher order algorithms to increase arithmetic intensity.

Higher Order EB Algorithm Development
Define a flux F as a polynomial expansion around a coordinate face f .
The flux integral becomes:∫

f

F dA =
∑
|p|<P

cp

∫
f

(x− x̄)p dA

• We define area,volume moments to be
mp
A ≡

∫
f
(x− x̄)p dA,mp

V ≡
∫
V

(x− x̄)p dV .

• These moments emerge directly from the grid generation algorithm
and can be calculated once and cached.

• Higher order algorithms reduce to finding the polynomial
coefficients {cp}.

• At the cut face (where n̂ 6= const), this gets more complicated, but
manageably so.

Stencils for Higher Order EB

Given cell-averaged data φi = 1
Vi

∫
Vi
φ dV , and a neighbor set N

around a face f we get a system of equations for {cp}f . For j ∈ N ,∑
|p|<P

cpm
p
j = φj

• We solve the over-determined system using weighted least squares.

• Careful choice of weighting function is key to getting a stable
algorithm.

• Fourth-order Poisson is complete (Devendran, submitted 2014). We
are working on incompressible Navier Stokes.

• Coarse-fine interpolation is much simpler with this formulation since
averaging is exact.

Conclusions
• Embedded boundary methods have fairly simple grid

generation but the algorithms can be complex.

• Hyperbolic, elliptic and parabolic equations all have different
associated strategies for solving small cell problems.

• These strategies can be layered for solving more complex
systems.

• Chombo provides tools for managing AMR and EB complexity.

• All this software, including the compressible Navier Stokes
code, is available at http://chombo.lbl.gov. This is free
software under a BSD license.

• EB algorithm and performance research continues apace.

• Thank you.

